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HOW TO INTEGRATE

A POLYNOMIAL OVER A SIMPLEX

V. BALDONI, N. BERLINE, J. A. DE LOERA, M. KÖPPE, AND M. VERGNE

Abstract. This paper settles the computational complexity of
the problem of integrating a polynomial function f over a rational
simplex. We prove that the problem is NP-hard for arbitrary poly-
nomials via a generalization of a theorem of Motzkin and Straus.
On the other hand, if the polynomial depends only on a fixed num-
ber of variables, while its degree and the dimension of the simplex
are allowed to vary, we prove that integration can be done in poly-
nomial time. As a consequence, for polynomials of fixed total de-
gree, there is a polynomial time algorithm as well. We conclude
the article with extensions to other polytopes and discussion of
other available methods.

1. Introduction

Let ∆ be a d-dimensional rational simplex inside Rn and let f ∈
Q[x1, . . . , xn] be a polynomial with rational coefficients. We consider
the problem of how to efficiently compute the exact value of the in-
tegral of the polynomial f over ∆, which we denote by

∫

∆
f dm. We

use here the integral Lebesgue measure dm on the affine hull 〈∆〉 of
the simplex ∆, defined below in section 2.1. This normalization of the
measure occurs naturally in Euler–Maclaurin formulas for a polytope
P , which relate sums over the lattice points of P with certain inte-
grals over the various faces of P . For this measure, the volume of the
simplex and every integral of a polynomial function with rational co-
efficients are rational numbers. Thus the result has a representation
in the usual (Turing) model of computation. This is in contrast to
other normalizations, such as the induced Euclidean measure, where
irrational numbers appear.

The main goals of this article are to discuss the computational com-
plexity of the problem and to provide methods to do the computation
that are both theoretically efficient and have reasonable performance
in concrete examples.

Computation of integrals of polynomials over polytopes is funda-
mental for many applications. We already mentioned summation over
lattice points of a polytope. They also make an appearance in recent
results in optimization problems connected to moment matrices [23].
These integrals are also commonly computed in finite element methods,
where the domain is decomposed into cells (typically simplices) via a
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mesh and complicated functions are approximated by polynomials (see
for instance [31]). When studying a random univariate polynomial p(x)
whose coefficients are independent random variables in certain inter-
vals, the probability distribution for the number of real zeros of p(x) is
given as an integral over a polytope [9]. Integrals over polytopes also
play a very important role in statistics, see, for instance, [25]. Remark
that among all polytopes, simplices are the fundamental case to con-
sider for integration since any convex polytope can be triangulated into
finitely many simplices.

Regarding the computational complexity of our problem, one can ask
what happens with integration over arbitrary polytopes. It is very ed-
ucational to look first at the case when f is the constant polynomial 1,
and the answer is simply a volume. It has been proved that already
computing the volume of polytopes of varying dimension is #P-hard
[16, 12, 20, 24], and that even approximating the volume is hard [17].
More recently in [28] it was proved that computing the centroid of a
polytope is #P-hard. In contrast, for a simplex, the volume is given by
a determinant, which can be computed in polynomial time. One of the
key contributions of this paper is to settle the computational complex-
ity of integrating a non-constant polynomial over a simplex. Before
we can state our results let us understand better the input and output
of our computations. Our output will always be the rational number
∫

∆
f dm in the usual binary encoding. The d-dimensional input sim-

plex will be represented by its vertices s1, . . . , sd+1 (a V -representation)
but note that, in the case of a simplex, one can go from its represen-
tation as a system of linear inequalities (an H-representation) to a
V -representation in polynomial time, simply by computing the inverse
of a matrix.

Thus the encoding size of ∆ is given by the number of vertices, the di-
mension, and the largest binary encoding size of the coordinates among
vertices. Computations with polynomials also require that one specifies
concrete data structures for reading the input polynomial and to carry
on the calculations. There are several possible choices. One common
representation of a polynomial is as a sum of monomial terms with
rational coefficients. Some authors assume the representation is dense
(polynomials are given by a list of the coefficients of all monomials up
to a given total degree r), while other authors assume it is sparse (poly-
nomials are specified by a list of exponent vectors of monomials with
non-zero coefficients, together with their coefficients). Another popu-
lar representation is by straight-line programs. A straight-line program
which encodes a polynomial is, roughly speaking, a program without
branches which enables us to evaluate it at any given point (see [14, 26]
and references therein). As we explain in Section 2, general straight-
line programs are too compact for our purposes, so instead we restrict
to a subclass we call single-intermediate-use (division-free) straight-line
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programs or SIU straight-line programs for short. The precise defini-
tion and explanation will appear in Section 2 but for now the reader
should think that polynomials are represented as fully parenthesized
arithmetic expressions involving binary operators + and ×.

Now we are ready to state our first result.

Theorem 1 (Integrating general polynomials over a simplex is hard).
The following problem is NP-hard. Input:

(I1) numbers d, n ∈ N in unary encoding,
(I2) affinely independent rational vectors s1, . . . , sd+1 ∈ Qn in binary

encoding,
(I3) an SIU straight-line program Φ encoding a polynomial f ∈ Q[x1, . . . , xn]

with rational coefficients.

Output, in binary encoding:

(O1) the rational number
∫

∆
f dm, where ∆ ⊆ Rn is the simplex with

vertices s1, . . . , sd+1 and dm is the integral Lebesgue measure
of the rational affine subspace 〈∆〉.

But we can also prove the following positive results.

Theorem 2 (Efficient integration of polynomials of fixed effective
number of variables). For every fixed number D ∈ N, there exists a
polynomial-time algorithm for the following problem.
Input:

(I1) numbers d, n, M ∈ N in unary encoding,
(I2) affinely independent rational vectors s1, . . . , sd+1 ∈ Qn in binary

encoding,
(I3) a polynomial f ∈ Q[X1, . . . , XD] represented by either an SIU

straight-line program Φ of formal degree at most M , or a sparse
or dense monomial representation of total degree at most M ,

(I4) a rational matrix L with D rows and n columns in binary en-
coding, the rows of which define D linear forms x 7→ 〈ℓj ,x〉 on
Rn.

Output, in binary encoding:

(O1) the rational number
∫

∆
f(〈ℓ1,x〉, . . . , 〈ℓD,x〉) dm, where ∆ ⊆

Rn is the simplex with vertices s1, . . . , sd+1 and dm is the inte-
gral Lebesgue measure of the rational affine subspace 〈∆〉.

In particular, the computation of the integral of a power of one linear
form can be done by a polynomial time algorithm. This becomes false
already if one considers powers of a quadratic form instead of powers
of a linear form. Actually, we prove Theorem 1 by looking at powers
QM of the Motzkin–Straus quadratic form of a graph.

Our method relies on properties of integrals of exponentials of linear
forms. A. Barvinok had previously investigated these integrals and
their computational complexity (see [3], [5]).
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As we will see later, when its degree is fixed, a polynomial has a
polynomial size representation in either the SIU straight-line program
encoding or the sparse or dense monomial representation and one can
switch between the three representations efficiently. The notion of for-
mal degree of an SIU straight-line program will be defined in Section 2.

Corollary 3 (Efficient integration of polynomials of fixed degree). For
every fixed number M ∈ N, there exists a polynomial-time algorithm
for the following problem. Input:

(I1) numbers d, n ∈ N in unary encoding,
(I2) affinely independent rational vectors s1, . . . , sd+1 ∈ Qn in binary

encoding,
(I3) a polynomial f ∈ Q[x1, . . . , xn] represented by either an SIU

straight-line program Φ of formal degree at most M , or a sparse
or dense monomial representation of total degree at most M .

Output, in binary encoding:

(O1) the rational number
∫

∆
f(x) dm, where ∆ ⊆ Rn is the sim-

plex with vertices s1, . . . , sd+1 and dm is the integral Lebesgue
measure of the rational affine subspace 〈∆〉.

Actually, we give two interesting methods that prove Corollary 3.
First, we simply observe that a monomial with total degree M involves
at most M variables. The other method is related to the polynomial
Waring problem: we decompose a homogeneous polynomial of total
degree M into a sum of M-th powers of linear forms.

In [22] Lasserre and Avrachenkov compute the integral
∫

∆
f(x) dm

when f is a homogeneous polynomial, in terms of the corresponding
polarized symmetric multilinear form (Proposition 18). We show that
their formula also leads to a proof of Corollary 3. Furthermore, sev-
eral other methods can be used for integration of polynomials of fixed
degree. We discuss them in Section 4.

This paper is organized as follows: After some preparation in Sec-
tion 2, the main theorems are proved in Section 3. In Section 4, we
discuss extensions to other convex polytopes and give a survey of the
complexity of other algorithms. Finally, in Section 5, we describe the
implementation of the two methods of Section 3, and we report on a
few computational experiments.

2. Preliminaries

In this section we prepare for the proofs of the main results.

2.1. Integral Lebesgue measure on a rational affine subspace of

Rn. On Rn itself we consider the standard Lebesgue measure, which
gives volume 1 to the fundamental domain of the lattice Zn. Let L
be a rational linear subspace of dimension d ≤ n. We normalize the
Lebesgue measure on L, so that the volume of the fundamental domain
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Table 1. The representation of (x2
1 + · · · + x2

n)k as a
straight-line program

Intermediate Comment

q1 = 0
q2 = x1

q3 = q2 · q2

q4 = q1 + q3 Thus q4 = x2
1.

q5 = x2

q6 = q5 · q5

q7 = q4 + q6 Now q7 = x2
1 + x2

2.
...

q3n−1 = xn

q3n = q3n−1 · q3n−1

q3n+1 = q3n−2 + q3n Now q3n+1 = x2
1 + · · · + x2

n.
q3n+2 = 1
q3n+3 = q3n+2 · q3n+1

q3n+4 = q3n+3 · q3n+1
...

q3n+k+2 = q3n+k+1 · q3n+1 Final result.

of the intersected lattice L ∩ Zn is 1. Then for any affine subspace
L + a parallel to L, we define the integral Lebesgue measure dm by
translation. For example, the diagonal of the unit square has length 1
instead of

√
2.

2.2. Encoding polynomials for integration. We now explain our
encoding of polynomials as SIU straight-line programs and justify our
use of this encoding. We say that a polynomial f is represented as a
(division-free) straight-line program Φ if there is a finite sequence of
polynomial functions of Q[x1, . . . , xn], namely q1, . . . , qk, the so-called
intermediate results, such that each qi is either a variable x1, . . . , xn, an
element of Q, or either the sum or the product of two preceding poly-
nomials in the sequence and such that qk = f . A straight-line program
allows us to describe in polynomial space polynomials which otherwise
would need to be described with exponentially many monomial terms.
For example, think of of the representation of (x2

1 + · · ·+x2
n)k as mono-

mials versus its description with only 3n+k+2 intermediate results; see
Table 2. The number of intermediate results of a straight line program
is called its length. To keep track of constants we define the size of an
intermediate result as one, unless the intermediate result is a constant
in which case its size is the binary encoding size of the rational num-
ber. The size of a straight-line program is the sum of the sizes of the



6 V. BALDONI, N. BERLINE, J. A. DE LOERA, M. KÖPPE, AND M. VERGNE

intermediate results. The formal degree of an intermediate result qi is
defined recursively in the obvious way, namely as 0 if qi is a constant
of Q, as 1 if qi is a variable xj , as the maximum of the formal degrees
of the summands if qi is a sum, and the sum of the formal degrees
of the factors if qi is a product. The formal degree of the straight-
line program Φ is the formal degree of the final result qk. Clearly the
total degree of a polynomial is bounded by the formal degree of any
straight-line program which represents it.

A favorite example to illustrate the benefits of a straight-line pro-
gram encoding is that of the symbolic determinant of an n×n matrix.
Its dense representation as monomials has size Θ(n!) but it can be com-
puted in O(n3) operations by Gaussian elimination. See the book [14]
as a reference for this concept.

From a monomial representation of a polynomial of degree M and
n variables it is easy to encode it as a straight-line program: first, by
going in increasing degree we can write a straight-line program that
generates all monomials of degree at most M in n variables. Then for
each of them compute the product of the monomial with its coefficient
so the length doubles. Finally successively add each term. This gives
a final length bounded above by four times the number of monomials
of degree at most M in n variables.

Straight-line programs are quite natural in the context of integra-
tion. One would certainly not expand (x2

1 + · · · + x2
n)k to carry on

numeric integration when we can easily evaluate it as a function. More
importantly, straight-line programs are suitable as an input and output
encoding and data structure in certain symbolic algorithms for com-
putations with polynomials, like factoring; see [14]. Since straight-line
programs can be very compact, the algorithms can handle polynomials
whose input and output encodings have an exponential size in a sparse
monomial representation.

However, a problem with straight-line programs is that this input
encoding can be so compact that the output of many computational
questions cannot be written down efficiently in the usual binary en-
coding. For example, while one can encode the polynomial x2k

with
a straight-line program with only k + 1 intermediate results (see Ta-

ble 2), when we compute the value of x2k
for x = 2, or the integral

∫ 2

0
x2k

dx = 22k+1/(2k + 1), the binary encoding of the output has a

size of Θ(2k). Thus the output, given in binary, turns out to be ex-
ponentially bigger than the input encoding. We remark that the same
difficulty arises if we choose a sparse input encoding of the polynomial
where not only the coefficients but also the exponent vectors are en-
coded in binary (rather than the usual unary encoding for the exponent
vectors).
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Table 2. The representation of a straight-line program
for x2k

, using iterated squaring

Intermediate Comment

q1 = x
q2 = q1 · q1

q3 = q2 · q2
...

qk+1 = qk · qk Final result.

Table 3. The representation of a single-intermediate-
use straight-line program for x2k

; note that the iterated
squaring method cannot be used

Intermediate Comment

q1 = x
q2 = x
q3 = q1 · q2 Now q3 = x2, and q1 and q2

cannot be used anymore.
q4 = x
q5 = q3 · q4 Thus q5 = x3.

...
q2k+1−2 = x
q2k+1−1 = q2k+1−3 · q2k+1−2 Final result.

This motivates the following variation of the notion of straight-
line program: We say a (division-free) straight-line program is single-
intermediate-use, or SIU for short, if every intermediate result is used
only once in the definition of other intermediate results. (However,
the variables x1, . . . , xn can be used arbitrarily often in the definition
of intermediate results.) With this definition, all ways to encode the

polynomial x2k
require at least 2k multiplications. An example SIU

straight-line program is shown in Table 3. Clearly single-intermediate-
use straight-line programs are equivalent, in terms of expressiveness
and encoding complexity, to fully parenthesized arithmetic expressions
using binary operators + and ×.

2.3. Efficient computation of truncated product of an arbi-

trary number of polynomials in a fixed number of variables.

The following result will be used in several situations.

Lemma 4. For every fixed number D ∈ N, there exists a polynomial
time algorithm for the following problem.
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Input: a number M in unary encoding, a sequence of k polynomials
Pj ∈ Q[X1, . . . , XD] of total degree at most M , in dense monomial
representation.
Output: the product P1 · · ·Pk truncated at degree M .

Proof. We start with the product of the first two polynomials. We
compute the monomials of degree at most M in this product. This takes
O(M2D) elementary rational operations, and the maximum encoding
length of any coefficient in the product is also polynomial in the input
data length. Then we multiply this truncated product with the next
polynomial, truncating at degree M , and so on. The total computation
takes O(kM2D) elementary rational operations. �

3. Proofs of the main results

Our aim is to perform an efficient computation of
∫

∆
f dm where

∆ is a simplex and f a polynomial. We will prove first that this is
not possible for f of varying degree under the assumption that P 6=
NP. More precisely, we prove that, under this assumption, an efficient
computation of

∫

∆
QM dm is not possible, where Q is a quadratic form

and M is allowed to vary.
In the next subsection we present an algorithm to efficiently compute

the integral
∫

∆
f dm in some particular situations, most notably the

case of arbitrary powers of linear forms.

3.1. Hardness for polynomials of non-fixed degree. For the proof
of Theorem 1 we need to extend the following well-known result of
Motzkin and Straus [27]. In this section, we denote by ∆ the (n − 1)-
dimensional canonical simplex {x ∈ Rn : xi ≥ 0,

∑n
i=1 xi = 1 }, and

we denote by dm the Lebesgue measure on the hyperplane {x ∈ Rn :
∑n

i=1 xi = 1 }, normalized so that ∆ has volume 1. For a function f on
∆, denote as usual ‖f‖∞ = maxx∈∆ |f(x)| and ‖f‖p = (

∫

∆
|f |p dm)1/p,

for p ≥ 1. Recall that the clique number of a graph G is the largest
number of vertices of a complete subgraph of G.

Theorem 5 (Motzkin–Straus). Let G be a graph with n vertices and
clique number ω(G). Let QG(x) be the Motzkin–Straus quadratic form
1
2

∑

(i,j)∈E(G) xixj. Then ‖QG(x)‖∞ = 1
2
(1 − 1

ω(G)
).

Our first result might be of independent interest as it shows that in-
tegrals of polynomials over simplices can carry very interesting combi-
natorial information. This result builds on the theorem of Motzkin and
Straus, using the proof of the well-known relation ‖f‖∞ = limp→∞ ‖f‖p.

Lemma 6. Let G be a graph with n vertices and clique number ω(G).
Let QG(x) be the Motzkin–Straus quadratic form. Then for p ≥ 4(e −
1)n3 ln(32n2), the clique number ω(G) is equal to

⌈

1
1−2‖QG‖p

⌉

.



HOW TO INTEGRATE A POLYNOMIAL OVER A SIMPLEX 9

To prove Lemma 6 we will first prove the following intermediate
result.

Lemma 7. For ε > 0 we have

(‖QG‖∞ − ε)(
ε

4
)(n−1)/p ≤ ‖QG‖p ≤ ‖QG‖∞ .

Proof. The right-hand side inequality follows from the normalization
of the measure, as |Q(x)| ≤ ‖QG‖∞, for all x ∈ ∆.

In order to obtain the other inequality, we use Hölder’s inequality
∫

∆
|fg| dm ≤ ‖f‖p ‖g‖q, where q is such that 1

p
+ 1

q
= 1. For any

(say) continuous function f on ∆, let us denote by ∆(f, ε) the set
{x ∈ ∆ : |f(x)| ≥ ‖f‖∞−ε }, and take for g the characteristic function
of ∆(f, ε). We obtain

(‖f‖∞ − ε)(vol ∆(f, ε))1/p ≤ ‖f‖p . (1)

Let a be a point of ∆ where the maximum of QG is attained. Since
∂QG

∂xi
=

∑

(i,j)∈E(G) xj we know that 0 ≤ ∂QG

∂xi
≤ 1 for x ∈ ∆. Since ∆ is

convex, we conclude that for any x ∈ ∆,

0 ≤ QG(a) − QG(x) ≤
n

∑

i=1

|ai − xi| .

Thus ∆(QG, ε) contains the set Cε = {x ∈ ∆ :
∑n

i=1 |ai − xi| < ε}.
We claim that vol(Cε) ≥ ( ε

4
)n−1 . This claim proves the left inequality

of the lemma when we apply it to (1).

Consider the dilated simplex ε/2
1+ε/2

∆ and the translated set Pε =
a

1+ε/2
+ ε/2

1+ε/2
∆. Clearly Pε is contained in ∆. Moreover, for x ∈ Pε,

we have
∑n

i=1 |ai − xi| ≤ ε
1+ε/2

≤ ε, hence Pε is contained in Cε. Since

vol(∆) = 1 for the normalized measure, the volume of Pε is equal to

( ε/2
1+ε/2

)n−1. Hence vol(Pε) ≥ (ε/4)n−1. This finishes the proof. �

Proof of Lemma 6. In the inequalities of Lemma 7, we substitute the
relation ‖QG‖∞ = 1

2
(1 − 1

ω(G)
), given by Motzkin–Straus’s theorem

(Theorem 5). We obtain

(
1

2
(1 − 1

ω(G)
) − ε)(ε/4)

n−1
p ≤ ‖QG‖p ≤

1

2
(1 − 1

ω(G)
).

Let us rewrite these inequalities as

1

1 − 2 ‖QG‖p

≤ ω(G) ≤ 1

1 − 2‖QG‖p

(ε/4)(n−1)/p − 2ε
. (2)

We only need to prove that for ε = 1
8n2 and p ≥ 4(e− 1)n3 ln(32n2) we

have

0 ≤ L(p) :=
1

1 − 2‖QG‖p

(ε/4)
n−1

p
− 2ε

− 1

1 − 2 ‖QG‖p

< 1. (3)
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Let us write

δp = ‖QG‖p (
1

(ε/4)
n−1

p

− 1) = ‖QG‖p ((32n2)
n−1

p − 1).

Thus L(p) in Equation 3 becomes now

L(p) =
1

1 − 2 ‖QG‖p

( 1

1 − 2 δp+ε

1−2‖QG‖p

− 1
)

. (4)

Since ‖QG‖p ≤ 1
2
(1 − 1

ω(G)
) ≤ 1

2
, we have a bound for δp

0 ≤ δp ≤ 1

2
((32n2)

n−1
p − 1).

Let A = (4
ε
)n−1 = (32n2)n−1. Since we assumed p ≥ 4(e−1)n3 ln(32n2),

we have 0 ≤ ln A
p

< 1, hence 0 ≤ A1/p − 1 < (e − 1) lnA
p

. We obtain

0 ≤ δp ≤ e − 1

2

(n − 1) log(32n2)

p
≤ 1

8n2
.

Since ω(G) ≤ n, we have 1 − 2 ‖QG‖p ≥ 1/n. Hence we have

2(δp + ε)

1 − 2 ‖QG‖p

≤ 1

2n
≤ 1

2
.

Finally for any number 0 < α < 1/2 we have 1
1−α

< 1 + 2α, hence

applying this fact to Equation 4 with α = 2 δp+ε
1−2‖QG‖p

we get

L(p) <
1

1 − 2 ‖QG‖p

( 4(δ + ε)

1 − 2 ‖QG‖p

)

≤ 4n2(δp + ε) ≤ 1.

This proves Equation 3 and the lemma. �

Proof of Theorem 1. The problem of deciding whether the clique num-
ber ω(G) of a graph G is greater than a given number K is a well-known
NP-complete problem [18]. From Lemma 6 we see that checking this
is the same as checking that for p = 4(e − 1)n3 ln(32n2) the integral
part of

∫

∆
(QG)p dm is less than Kp. Note that the polynomial QG(x)p

is a power of a quadratic form and can be encoded as a SIU straight-
line program of length O(n3 log n · |E(G)|). If the computation of the
integral

∫

∆
f dm of a polynomial f could be done in polynomial time

in the input size of f , we could then verify the desired inequality in
polynomial time as well. �

3.2. An extension of a formula of Brion. In this section, we obtain
several expressions for the integrals

∫

∆
eℓ dm and

∫

∆
ℓM1
1 · · · ℓMD

D dm,
where ∆ ⊂ Rn is a simplex and ℓ, ℓj are linear forms on Rn. The
first formula, (5) in Lemma 8, is obtained by elementary iterated in-
tegration on the standard simplex. It leads to a computation of the
integral

∫

∆
ℓM1
1 · · · ℓMD

D dm in terms of the Taylor expansion of a certain
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analytic function associated to ∆ (Corollary 11), hence to a proof of
the complexity result of Theorem 2.

In the case of one linear form ℓ which is regular, we recover in this
way the “short formula” of Brion as Corollary 12. This result was first
obtained by Brion as a particular case of his theorem on polyhedra [13].

Lemma 8. Let ∆ be the simplex that is the convex hull of (d+1) affinely
independent vertices s1, s2, . . . , sd+1 in Rn, and let ℓ be an arbitrary
linear form on Rn. Then

∫

∆

eℓ dm = d! vol(∆, dm)
∑

k∈Nd+1

〈ℓ, s1〉k1 · · · 〈ℓ, sd+1〉kd+1

(|k| + d)!
, (5)

where |k| =
∑d+1

j=1 kj.

Proof. Using an affine change of variables, it is enough to prove (5)
when ∆ is the d-dimensional standard simplex ∆st ⊂ Rd defined by

∆st =

{

x ∈ Rd : xi ≥ 0,
d

∑

i=1

xi ≤ 1

}

.

The volume of ∆st is equal to 1
d!

. In the case of ∆st, the vertex sj is

the basis vector ej for 1 ≤ j ≤ d and sd+1 = 0. Let 〈ℓ, x〉 =
∑d

j=1 ajxj .

Then (5) becomes
∫

∆st

ea1x1+···+adxd dx =
∑

k∈Nd

ak1
1 · · ·akd

d

(|k| + d)!
.

We prove it by induction on d. For d = 1, we have
∫ 1

0

eax dx =
ea − 1

a
=

∑

k≥0

ak

(k + 1)!
.

Let d > 1. We write
∫

∆st

ea1x1+···+adxd dx =

∫ 1

0

eadxd

(
∫

xj≥0
x1+···+xd−1≤1−xd

ea1x1+···+ad−1xd−1 dx1 . . . dxd−1

)

dxd.

By the induction hypothesis and an obvious change of variables, the
inner integral is equal to

(1 − xd)
d−1

∑

k∈Nd−1

(1 − xd)
|k| ak1

1 · · ·akd−1

d−1

(|k| + d − 1)!
.

The result now follows from the relation
∫ 1

0

(1 − x)p

p!
eax dx =

∑

k≥0

ak

(k + p + 1)!
.
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�

Remark 9. Let us replace ℓ by tℓ in (5) and expand in powers of t.
We obtain the following formula.
∫

∆

ℓM dm = d! vol(∆, dm)
M !

(M + d)!

∑

k∈Nd+1,|k|=M

〈ℓ, s1〉k1 · · · 〈ℓ, sd+1〉kd+1.

(6)
This relation is a particular case of a result of Lasserre and Avrachenkov,
Proposition 18, as we will explain in section 4.3 below.

Theorem 10. Let ∆ be the simplex that is the convex hull of (d + 1)
affinely independent vertices s1, s2, . . . , sd+1 in Rn.

∑

M∈N

tM
(M + d)!

M !

∫

∆

ℓM dm = d! vol(∆, dm)
1

∏d+1
j=1(1 − t〈ℓ, sj〉)

. (7)

Proof. We apply Formula (6). Summing up from M = 0 to ∞, we
recognize the expansion of the right-hand side of (7) into a product of
geometric series:

∑

M∈N

tM
(M + d)!

M !

∫

∆

ℓM dm =

d! vol(∆, dm)
∑

M∈N

tM
∑

k∈Nd+1|,k|=M

〈ℓ, s1〉k1 · · · 〈ℓ, sd+1〉kd+1.

�

Theorem 10 has an extension to the integration of a product of pow-
ers of several linear forms. The following formula is implemented in
our Maple program duality.mpl, see Table 8

Corollary 11. Let ℓ1, . . . , ℓD be D linear forms on Rn. We have the
following Taylor expansion:

∑

M∈ND

tM1
1 · · · tMD

D

(|M| + d)!

d! vol(∆, dm)

∫

∆

ℓM1
1 · · · ℓMD

D

M1! . . .MD!
dm =

1
∏d+1

i=1 (1 − t1〈ℓ1, si〉 − · · · − tD〈ℓD, si〉)
. (8)

Proof. Replace tℓ with t1ℓ1 + · · ·+ tDℓD in (7) and take the expansion
in powers tM1

1 · · · tMD
D . �

From Theorem 10, we obtain easily the ”short formula” of Brion, in
the case of a simplex.

Corollary 12 (Brion). Let ∆ be as in the previous theorem. Let ℓ be a
linear form which is regular w.r.t. ∆, i.e., 〈ℓ, si〉 6= 〈ℓ, sj〉 for any pair



HOW TO INTEGRATE A POLYNOMIAL OVER A SIMPLEX 13

i 6= j. Then we have the following relations.

∫

∆

ℓM dm = d! vol(∆, dm)
M !

(M + d)!

(

d+1
∑

i=1

〈ℓ, si〉M+d

∏

j 6=i〈ℓ, si − sj〉
)

. (9)

∫

∆

eℓ dm = d! vol(∆, dm)

d+1
∑

i=1

e〈ℓ,si〉

∏

j 6=i〈ℓ, si − sj〉
. (10)

Proof. We consider the right-hand side of (7) as a rational function of
t. The poles t = 1/〈ℓ, si〉 are simple precisely when ℓ is regular. In this
case, we obtain (9) by taking the expansion into partial fractions. The
second relation follows immediately by expanding eℓ. �

When ℓ is regular, Brion’s formula is very short, it is a sum of d + 1
terms. When ℓ is not regular, the expansion of (7) into partial fractions
leads to an expression of the integral as a sum of residues. Let K ⊆
{1, . . . , d + 1} be an index set of the different poles t = 1/〈ℓ, sk〉, and
for k ∈ K let mk denote the order of the pole, i.e.,

mk = #
{

i ∈ {1, . . . , d + 1} : 〈ℓ, si〉 = 〈ℓ, sk〉
}

.

With this notation, we have the following formula, which is imple-
mented in our Maple program waring.mpl, see Tables 5 and 6.

Corollary 13.

∫

∆

ℓM dm =

d! vol(∆, dm)
M !

(M + d)!

∑

k∈K

Resε=0
(ε + 〈ℓ, sk〉)M+d

εmk
∏

i∈K
i6=k

(ε + 〈ℓ, sk − si〉)mi
(11)

Remark 14. It is worth remarking that Corollaries 12 and 13 can
be seen as a particular case of the localization theorem in equivariant
cohomology (see for instance [8]), although we did not use this fact and
instead gave a simple direct calculation. In our situation, the variety is
the complex projective space CPd, with action of a d-dimensional torus,
such that the image of the moment map is the simplex ∆. Brion’s
formula corresponds to the generic case of a one-parameter subgroup
acting with isolated fixed points. In the degenerate case when the
set of fixed points has components of positive dimension, the polar
parts in (11) coincide with the contributions of the components to the
localization formula.

A formula equivalent to Corollary 13 appears already in [3] (3.2).

3.3. Polynomial time algorithm for polynomial functions of a

fixed number of linear forms.
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Proof of Theorem 2. We now present an algorithm which, given a poly-
nomial of the particular form f(〈ℓ1,x〉, · · · , 〈ℓD,x〉) where f is a poly-
nomial depending on a fixed number D of variables, and 〈ℓj,x〉 =
Lj1x1 + · · ·+Ljnxn, for j = 1, . . . , D, are linear forms on Rn, computes
its integral on a simplex, in time polynomial on the input data. This
algorithm relies on Corollary 11.

The number of monomials of degree M in D variables is equal to
(

M+D−1
D−1

)

. Therefore, when D is fixed, the number of monomials of

degree at most M in D variables is O(MD). When the number of
variables D of a straight-line program Φ is fixed, it is possible to com-
pute a sparse or dense representation of the polynomial represented
by Φ in polynomial time, by a straight-forward execution of the pro-
gram. Indeed, all intermediate results can be stored as sparse or
dense polynomials with O(MD) monomials. Since the program Φ is
single-intermediate-use, the binary encoding size of all coefficients of
the monomials can be bounded polynomially by the input encoding
size. Thus it is enough to compute the integral of a monomial,

∫

∆

〈ℓ1,x〉M1 · · · 〈ℓD,x〉MD dm. (12)

From Corollary 11, it follows that

(|M| + d)!

d! vol(∆, dm)

∫

∆

ℓM1
1 · · · ℓMD

D

M1! · · ·MD!
dm

is the coefficient of tM1
1 · · · tMD

D in the Taylor expansion of

1
∏d+1

i=1 (1 − t1〈ℓ1, si〉 − · · · − tD〈ℓD, si〉)
.

Since D is fixed, this coefficient can be computed in time polynomial
with respect to M and the input data, by multiplying series truncated
at degree |M|, as explained in Lemma 4.

Finally, vol(∆, dm) needs to be computed. If ∆ = conv{s1, . . . , sd+1}
is full-dimensional (d = n), we can do so by computing the determinant
of the matrix formed by difference vectors of the vertices:

vol(∆, dm) =
1

n!
|det(s1 − sn+1, . . . , sn − sn+1)| .

If ∆ is lower-dimensional, we first compute a basis B ∈ Zn×d of the
intersection lattice Λ = lin(∆) ∩ Zn. This can be done in polynomial
time by applying an efficient algorithm for computing the Hermite nor-
mal form [19]. Then we express each difference vector vi = si − sd+1 ∈
lin(∆) for i = 1, . . . , d using the basis B as vi = Bv′

i, where vi ∈ Qd.
We obtain

vol(∆, dm) =
1

d!
|det(v′

1, . . . ,v
′
d)| ,
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thus the volume computation is reduced to the calculation of a deter-
minant. This finishes the proof of Theorem 2. �

3.4. Polynomial time algorithms for polynomials of fixed de-

gree. In the present section, we assume that the total degree of the
input polynomial f we wish to integrate is a constant M .

Proof of Corollary 3. First of all, when the formal degree M of a straight-
line program Φ is fixed, it is possible to compute a sparse or dense
representation of the polynomial represented by Φ in polynomial time,
by a straight-forward execution of the program. Indeed, all intermedi-
ate results can be stored as sparse or dense polynomials with O(nM)
monomials. Since the program Φ is single-intermediate-use, the bi-
nary encoding size of all coefficients of the monomials can be bounded
polynomially by the input encoding size.

Now, the key observation is that a monomial of degree at most M
depends effectively on D ≤ M variables xi1 , . . . , xiD , thus it is of the
form

ℓM1
1 · · · ℓMD

D ,

where the linear forms ℓj(x) = xij are the coordinates that effec-
tively appear in the monomial. Thus, Corollary 3 follows immediately
from Theorem 2. This method is implemented in our Maple program
duality.mpl, see Tables 8 and 12. �

Remark 15. The relations in Corollary 12 can be interpreted as equal-
ities between meromorphic functions of ℓ. The right-hand side is a sum
of meromorphic functions whose poles cancel out, so that the sum is ac-
tually analytic. We derive from this another polynomial time algorithm
for computating the integral

∫

∆

xm1
1 · · ·xmd

d dm.

More precisely, let us write 〈ℓ,x〉 = y1x1 + · · ·+ydxd. Then the integral
∫

∆
xm1

1 · · ·xmd
d dm is the coefficient of

y
m1
1 ...y

md
d

m1!···md!
in the Taylor expansion

of
∫

∆
ey1x1+...ydxd dm. We compute it by taking the expansion of each

of the terms of the right hand-side of Equation (10) into an iterated
Laurent series with respect to the variables x1, . . . , xd. This method is
implemented in our Maple program iterated-laurent.mpl, see Ta-
bles 11 and 14.

In the following, we give another proof of Corollary 3, based on
decompositions of polynomials as sums of powers of linear forms.

Alternative proof of Corollary 3. From Corollaries 12 and 13, we derive
another efficient algorithm, as follows. The key idea now is that one
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can decompose the polynomial f as a sum f :=
∑

ℓ cℓℓ
M
j with at most

2M terms in the sum. We use the well-known identity

xM1
1 xM2

2 · · ·xMn
n

=
1

|M|!
∑

0≤pi≤Mi

(−1)|M|−(p1+···+pn)

(

M1

p1

)

· · ·
(

Mn

pn

)

(p1x1+· · ·+pnxn)|M|,

(13)

where |M| = M1 + · · ·+ Mn ≤ M .
In the implementation of this method, we may group together pro-

portional linear forms. The number F (n, M) of primitive vectors (p1, . . . , pn)
which appear in the decomposition of a polynomial of total degree ≤ M
is given by the following closed formula. 1.

Lemma 16. Let

F (n, M) =

Card({(p1, . . . , pn) ∈ Nn, gcd(p1, . . . , pn) = 1, 1 ≤
∑

i

pi ≤ M}).

Then

F (n, M) =

M
∑

d=1

µ(d)(

(

n + [M
d

]

n

)

− 1), (14)

where µ(d) is the Möbius function.
When M is fixed and n → ∞ we have

F (n, M) =
nM

M !
+ O(nM−1).

Proof. Let G(n, M) = Card({(p1, . . . , pn) ∈ Nn, 1 ≤
∑

pi ≤ M}). By
grouping together the vectors (p1, . . . , pn) with a given gcd d, we obtain

G(n, M) =

M
∑

d=1

F (n, [
M

d
]).

Moreover the number of all integral vectors (p1, . . . , pn) ∈ Nn such that
∑

i pi ≤ M is equal to the binomial coefficient
(

n+M
n

)

. When we omit
the zero-vector we obtain

G(n, M) =

(

n + M

n

)

− 1.

Then we obtain (14) by applying the second form of Möbius inversion
formula. The asymptotics follow easily from (14). �

Thus Formula (13), together with Corollary 13, give another poly-
nomial time algorithm for integrating a polynomial of fixed degree. It
is implemented in our Maple program waring.mpl, see Tables 6 and
10. �

1Lemma 16 was kindly supplied by Christophe Margerin.
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The problem of finding a decomposition with the smallest possible
number of summands is known as the polynomial Waring problem.
Alexander and Hirschowitz solved the generic problem (see [1], and
[11] for an extensive survey).

Theorem 17. The smallest integer r(M, n) such that a generic homo-
geneous polynomial of degree M in n variables is expressible as the sum
of r(M, n) M-th powers of linear forms is given by

r(M, n) =

⌈

(

n+M−1
M

)

n

⌉

,

with the exception of the cases r(3, 5) = 8, r(4, 3) = 6, r(4, 4) = 10,
r(4, 5) = 15, and M = 2, where r(2, n) = n.

An algorithm for decomposing a given polynomial into the smallest
possible number of powers of linear forms can be found in [10].

In the extreme case, when the polynomial f happens to be the power
of one linear form ℓ, one should certainly avoid applying the above
decomposition formula to each of the monomials of f . We remark that,
when the degree is fixed, we can decide in polynomial time whether a
polynomial f , given in sparse or dense monomial representation, is a
power of a linear form ℓ, and, if so, construct such a linear form.

4. Other algorithms for integration and extensions to

other polytopes

We conclude with a discussion of how to extend integration to other
polytopes and a review of the complexity of other methods to integrate
polynomials over polytopes.

4.1. A formula of Lasserre–Avrachenkov. Another nice formula
is the Lasserre–Avrachenkov formula for the integration of a homoge-
neous polynomial [22] on a simplex. As we explain below, this yields a
polynomial-time algorithm for the problem of integrating a polynomial
of fixed degree over a polytope in varying dimension, thus providing an
alternative proof of Corollary 3.

Proposition 18 ([22]). Let H be a symmetric multilinear form defined
on (Rd)M . Let s1, s2, . . . , sd+1 be the vertices of a d-dimensional simplex
∆. Then one has

∫

∆

H(x,x, . . . ,x)dx =
vol(∆)
(

M+d
M

)

∑

1≤i1≤i2≤···iM≤d+1

H(si1 , si2 , . . . , siM ). (15)
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Remark 19. By reindexing the summation in (15), as H is symmetric,
we obtain

∫

∆

H(x,x, . . . ,x)dx =

vol(∆)
(

M+d
M

)

∑

k1+···+kd+1=M

H(s1, . . . , s1, . . . , sd+1, . . . , sd+1), (16)

where s1 is repeated k1 times, s2 is repeated k2 times, etc. When H
is of the form H =

∏M
i=1〈ℓ,xi〉, for a single linear form ℓ, then (16)

coincides with Formula (6) in Remark 9.

Now any polynomial f which is homogeneous of degree M can be
written as f(x) = Hf (x,x, . . . ,x) for a unique multilinear form Hf . If

f = ℓM then Hf =
∏M

i=1〈ℓ,xi〉. Thus for fixed M the computation of
Hf can be done by decomposing f into a linear combination of powers
of linear forms, as we did in the proof of Corollary 3. Alternatively one
can use the well-known polarization formula,

Hf(x1, . . . ,xM) =
1

2MM !

∑

ε∈{±1}M

ε1ε2 · · · εMf
(

M
∑

i=1

εixi

)

, (17)

Thus from (15) we get the following corollary.

Corollary 20. Let f be a homogeneous polynomial of degree M in
d variables, and let s1, s2, . . . , sd+1 be the vertices of a d-dimensional
simplex ∆. Then

∫

∆

f(y) dy =

vol(∆)

2MM !
(

M+d
M

)

∑

1≤i1≤i2≤···≤iM≤d+1

∑

ε∈{±1}M

ε1ε2 · · · εMf
(

M
∑

k=1

εksik

)

. (18)

We remark that when we fix the degree M of the homogeneous poly-
nomial f , the length of the polarization formula (thus the length of the
second sum in (18) is a constant. The length of the first sum in (18) is
O(nM). Thus, for fixed degree in varying dimension, we obtain another
polynomial-time algorithm for integrating over a simplex.

4.2. Traditional conversion of the integral as iterated univari-

ate integrals. Let P ⊆ Rd be a full-dimensional polytope and f a
polynomial. The traditional method we teach our calculus students
to compute multivariate integrals over a bounded region requires them
to write the integral

∫

P
f dm is a sum of sequences of one-dimensional

integrals
K

∑

j=1

∫ b1j

a1j

∫ b2j

a2j

· · ·
∫ bdj

adj

f dxi1 dxi2 . . . dxid (19)
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for which we know the limits of integration aij , bij explicitly. The prob-
lem of finding the limits of integration and the sum has interesting com-
plexity related to the well-known Fourier-Motzkin elimination method
(see Chapter One in [30] for a short introduction).

Given a system of linear inequalities Ax ≤ b, describing a polytope
P ⊂ Rd, Fourier–Motzkin elimination is an algorithm that computes a
new larger system of inequalities Âx ≤ b̂ with the property that those
inequalities that do not contain the variable xd describe the projection
of P into the hyperplane xd = 0. We will not explain the details, but
Fourier-Motzkin elimination is quite similar to Gaussian elimination
in the sense that the main operations necessary to eliminate the last
variable xd require to rearrange, scale, and add rows of the matrix
(A,b), but unlike Gaussian elimination, new inequalities are added to
the system.

It was first observed by Schechter [29] that Fourier-Motzkin elim-
ination provides a way to generate the traditional iterated integrals.
More precisely, let us call Pd the projection of P into the the hyper-
plane xd = 0. Clearly when integrating over a polytopal region we
expect that the limits of integration will be affine functions. From
the output of Fourier-Motzkin Âx ≤ b̂, we have x ∈ P if and only if
(x1, . . . , xd−1) ∈ Pd and for the first k + r inequalites of the system

xd ≤ b̂i −
d−1
∑

j=1

âijxj = Au
i (x1, . . . , xd−1)

for i = 1, . . . k as well as

xd ≥ b̂k+i −
d−1
∑

j=1

âk+ijxj , = Al
i(x1, . . . , xd−1)

for i = 1, . . . , r. Then, if we define

m(x1, . . . , xd) = max{Al
j(x1, . . . , xd−1), j = 1, . . . , r}

and

M(x1, . . . , xd) = min{Au
j (x1, . . . , xd−1), j = 1, . . . , r},

we can write
∫

P

f(x) dm =

∫

Pd

∫ M

m

f(x) dx1 dx2 · · · dxd

Finally the convex polytope Pd can be decomposed into polyhedral
regions where the functions m, M become simply affine functions from
among the list. Since the integral is additive we get an expression

∫

P

f(x) dm =
∑

i,j

∫

P ij
d

∫ Au
j

Al
j

f(x) dx1 dx2 · · · dxd.
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Finally by repeating the elimination of variables we recover the full
iterated list in (19). As it was observed in [29], this algorithm is unfor-
tunately not efficient because the iterated Fourier-Motzkin elimination
procedure can produce exponentially many inequalities for the descrip-
tion of the projection (when the dimension d varies). Thus the number
of summands considered can in fact grow exponentially.

4.3. Two formulas for integral computation. We would like to
review two formulas that are nice and could speed up computation in
particular cases although they do not seem to yield efficient algorithms
just on their own.

First, one may reduce the computation of
∫

P
f dm to integrals on

the facets of P , by applying Stokes formula. We must be careful to use
a rational Lebesgue measure on each facet. As shown in ([4]), we have
the following result.

Theorem 21. Let {Fi}i=1,...,m be the set of facets of a full-dimensional
polytope P ⊆ Rn. For each i, let ni be a rational vector which is
transverse to the facet Fi and pointing outwards P and let dµi be the
Lebesgue measure on the affine hull of Fi which is defined by contracting
the standard volume form of Rn with ni. Then

IP (a) =

∫

P

e〈a,x〉 dx =
1

〈a,y〉

m
∑

i=1

〈ni,y〉
∫

Fi

e〈a,x〉 dµi

for all a ∈ Cn and y ∈ Rn such that 〈y, a〉 6= 0.

It is clear that, by considering the expansion of the analytic function
∫

P
e〈a,x〉 dx, we can again obtain an analogous result for polynomials.

An alternative proof was provided by [21]. The above theorem, how-
ever, does not necessarily reduce the computational burden because,
depending on the representation of the polytope, the number of facets
can be large and also the facets themselves can be complicated poly-
topes. Yet, together with our results we obtain the following corollary
for two special cases.

Corollary 22. There is a polynomial-time algorithm for the following
problem. Input:

(I1) the dimension n ∈ N in unary encoding,
(I2) a list of rational vectors in binary encoding, namely

(i) either vectors (h1, h1,0), . . . , (hm, hm,0) ∈ Qn+1 that describe
the facet-defining inequalities 〈hi,x〉 ≤ hi,0 of a simplicial
full-dimensional rational polytope P ,

(ii) or vectors s1, . . . , sN ∈ Qn that are the vertices of a simple
full-dimensional rational polytope P ,

(I3) a rational vector a ∈ Qn in binary encoding,
(I4) an exponent M ∈ N in unary encoding.

Output, in binary encoding,
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(O1) the rational number
∫

P

f(x) dm where f(x) = 〈a,x〉M

and where dm is the standard Lebesgue measure on Rn.

Proof. In the case (i) of simplicial polytopes P given by facet-defining
inequalities, we can use linear programming to compute in polynomial
time a V -representation for each simplex Fi that is a facet of P . By
applying Theorem 21 with ta in place of a and extracting the coefficient
of tM in the Taylor expansion of the analytic function t 7→ IP (ta), we
obtain the formula

∫

P

〈a,x〉M dx =
1

(M + 1)〈y, a〉

m
∑

i=1

〈y,ni〉
∫

Fi

〈a,x〉M+1 dµi,

which holds for all y ∈ Rn with 〈y, a〉 6= 0. It is known that a suit-
able y ∈ Qn can be constructed in polynomial time. The integrals
on the right-hand side can now be evaluated in polynomial time using
Theorem 2.

In the case (ii) of simple polytopes P given by their vertices, we make
use of the fact that a variant of Brion’s formula (10) actually holds for
arbitrary rational polytopes. For a simple polytope P , it takes the
following form.

∫

P

ℓM dx =
M !

(M + n)!

N
∑

i=1

∆i
〈ℓ, si〉M+n

∏

sj∈N(si)
〈ℓ, si − sj〉

, (20)

where N(si) denotes the set of vertices adjacent to si in P , and ∆i =
|det(si − sj)j∈N(si)|. The right-hand side is a sum of rational functions
of ℓ, where the denominators cancel out so that the sum is actually
polynomial. If ℓ is regular, that is to say 〈ℓ, si − sj〉 6= 0 for any i and
j ∈ N(si), then the integral can be computed by (20) which is a very
short formula. However it becomes difficult to extend the method which
we used in the case of a simplex. Instead, we can do a perturbation. In
(20), we replace ℓ by ℓ + εℓ′, where ℓ′ is such that ℓ + εℓ′ is regular for
ε 6= 0. The algorithm for choosing ℓ′ is bounded polynomially. Then
we do expansions in powers of ε as explained in Lemma 4. �

4.4. Triangulation of arbitrary polytopes. It is well-known that
any convex polytope can be triangulated into finitely many simplices.
Thus we can use our result to extend the integration of polynomials
over any convex polytope. The complexity of doing it this way will
directly depend on the number of simplices in a triangulation. This
raises the issue of finding the smallest triangulation possible of a given
polytope. Unfortunately this problem was proved to be NP-hard even
for fixed dimension three (see [15]). Thus it is in general not a good idea
to spend time finding the smallest triangulation possible. A cautionary
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remark is that one can naively assume that triangulations help for non-
convex polyhedral regions, while in reality it does not because there
exist nonconvex polyhedra that are not triangulable unless one adds
new points. Deciding how many new points are necessary is an NP-
hard problem [15].

5. Implementation and computational experiments

We have written Maple programs to perform some initial experiments
with the three methods described in Section 3.4. The programs are
available at [2].2

5.1. Integration of a power of a linear form and decomposition

of polynomials into powers of linear forms.

5.1.1. Decomposition of polynomials into powers of linear forms. Ta-
ble 4 shows the number F (n, M) of primitive linear forms (p1, . . . , pn)
which may appear in the decomposition (13) of a polynomial of total
degree ≤ M . This number is computed using the closed formula (14).

Table 4. Decomposition of polynomials into powers of
linear forms

Degree M

n 1 2 5 10 20 30 40 50

2 2 3 11 33 129 279 491 775
3 3 6 40 205 1381 4306 9880 18970
4 4 10 103 831 9373 41373 122349 286893
5 5 15 221 2681 49586 305836 1.2 · 106 3.3 · 106

8 8 36 1226 42271 3.1 · 106 4.8 · 107 3.7 · 108 1.9 · 109

10 10 55 2917 181413 3.0 · 107 8.4 · 108 1.0 · 1010 7.5 · 1010

15 15 120 15338 3.3 · 106 3.2 · 109 3.4 · 1011 1.2 · 1013 2.1 · 1014

20 20 210 52859 3.0 · 107 1.4 · 1011 4.7 · 1013 4.2 · 1015 1.6 · 1017

30 30 465 324076 8.5 · 108 4.7 · 1013 1.2 · 1017 5.5 · 1019 8.9 · 1021

40 40 820 1.2 · 106 1.0 · 1010 4.2 · 1015 5.5 · 1019 1.1 · 1023 6.0 · 1025

50 50 1275 3.5 · 106 7.5 · 1010 1.6 · 1017 8.9 · 1021 6.0 · 1025 1.0 · 1029

2All algorithms are implemented in the files waring.mpl,
iterated laurent.mpl, duality.mpl; all tables with random examples are
created using procedures in examples.mpl and tables.mpl.
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5.1.2. Integration of a power of a linear form over a simplex. We have
written a Maple program which implements the method of Corollary 13
for the efficient integration of a power of one linear form over a simplex,
∫

∆
ℓM dm.3 In a computational experiment, for a given dimension n and

degree M , we picked random full-dimensional simplices ∆ and random
linear forms ℓ and used the Maple program to compute the integral.
Table 5 shows the computation times.4

Table 5. Integration of powers of linear forms over simplices

Degree M

n 2 10 20 50 100 300 1000

10 0.0 0.0 0.0 0.1 0.0 0.0 0.0
20 0.1 0.2 0.1 0.2 0.1 0.2 0.2
50 1.0 1.4 1.4 1.6 1.6 1.6 1.7

100 5.1 8.4 8.7 9.2 9.5 10.0 11.0
200 36 71 84 88 97 110 120
300 150 320 400 470 520 530
400 500

1000

5.1.3. Integration of a monomial over a simplex by decomposition as
sum of powers of linear forms. Next, we tested the algorithm which
computes the integral of a monomial xM over a simplex ∆, by de-
composing it as a sum of powers of linear forms. This algorithm was
discussed in Section 3.4. In our experiments, for given dimension n and
total degree M , we picked 50 combinations of a random simplex ∆ of
dimension n and a random exponent vector M = (M1, . . . , Mn) with
∑n

i=1 Mi = M .
First we decompose a given monomial into a sum of powers of linear

forms, then we integrate each summand using the Maple procedure
discussed above. 5 Table 6 shows the minimum, average, and maximum
computation times.

3The integration is done by the Maple procedure integral power linear form in
waring.mpl.

4All experiments were done with Maple 12 on Sun Fire V440 machines with
UltraSPARC-IIIi processors running at 1.6GHz. The computation times are given
in CPU seconds. All experiments were subject to a time limit of 600 seconds per
example.

5This method is implemented in the Maple procedure integral via waring in
waring.mpl.
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Table 6. Integration of a random monomial of pre-
scribed degree by decomposition into a sum of powers
of linear forms

Degree

n 1 2 5 10 20 30 40 50 100 200 300

2 0
0

0

0
0

0.1

0
0

0.1

0
0.1
0.1

0
0.2
0.4

0
0.5
0.8

0.1
1.0
1.9

0.3
1.5
2.6

0.8
8.3

12

6.2
38

59

0.3
90

174

3 0
0

0

0
0

0.2

0
0

0.1

0
0.2
0.4

0
1.1
2.2

0.4
3.0
7.0

0.5
7.4

19

0.9
17

37

4.6
173

440

4 0
0

0

0
0

0.2

0
0.1
0.2

0.1
0.4
0.9

0.6
3.6
8.7

1.5
15

44

4.8
52

149

9.7
135

404

5 0
0

0

0
0

0.2

0
0.1
0.3

0.1
0.7
1.9

0.3
8.8

27

4.5
48

195

6 0
0

0.2

0
0

0.1

0
0.2
0.4

0.2
1.3
2.7

1.3
24

74

8.0
144

544

7 0
0

0.2

0
0

0.1

0
0.3
0.6

0.5
2.1
5.0

5.9
53

152

8 0
0

0.2

0
0

0.2

0.1
0.3
0.6

0.4
3.2
8.5

11
72

216

10 0
0

0.3

0
0.1
0.2

0.2
0.4
0.8

1.5
6.1

12

15 0
0.1
0.2

0
0.1
0.3

0.3
1.2
1.8

3.8
17

41

20 0.1
0.1
0.2

0.1
0.3
0.4

0.6
2.2
2.9

4.4
41

73

30 0.1
0.2
0.3

0.2
0.5
0.6

2.7
5.1
6.8

37
106

170

40 0.3
0.4
0.6

0.3
1.1
1.3

5.2
10

12

93
242

414

50 0.5
0.6
0.8

0.7
1.8
2.0

8.2
17

20
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5.2. Integration of a monomial, using iterated Laurent series.

In this section, we test the implementation of the method of iterated
Laurent expansion described in Remark 15 of Section 3.4.6

Table 7 shows the results.

Table 7. Integration of a random monomial of pre-
scribed degree using iterated Laurent series.

Degree

n 1 2 5 10 20 30 40 50 100 200 300

2 0
0

0

0
0

0.1

0
0

0.1

0
0

0.1

0
0

0.1

0
0

0.1

0
0.1
0.2

0
0.1
0.3

0
0.5
1.2

0.3
3.0
7.1

0.2
8.1

30

3 0
0

0

0
0

0

0
0

0.1

0
0.1
0.2

0
0.4
6.2

0
0.5
3.7

0.1
1.2
7.1

0.1
3.4

11

0.2
34

164

4 0

0

0

0

0

0.1

0

0.1
0.2

0

0.3
0.7

0.1

1.4
12

0.3

4.8
35

0.4

16

77

1.0

39

176

5 0
0.1
0.1

0
0.1
0.1

0.1
0.2
0.4

0.1
0.7

12

0.1
4.5

35

1.4
36

551

0.2
78

353

6 0.1
0.1
0.1

0
0.2
5.0

0.1
0.3
0.6

0.2
1.6
5.9

0.4
24

205

7 0.1
0.1
0.2

0.1
0.3
5.4

0.2
0.7
4.6

0.4
4.1

22

8 0.2
0.2
0.2

0.2
0.3
4.8

0.2
1.0
4.1

0.3
11

111

10 0.3

0.5
7.0

0.4

0.5
3.5

0.4

2.8
12

15 1.3
1.7
5.8

1.4
1.9
5.1

3.5
25

73

20 3.8
5.0
9.4

4.0
5.3
8.1

4.7
123

352

30 25
29

41

26
29

32

40 88
98

106

90
101

152

50 248
271

300

259
283

429

6This method is implemented in the Maple procedure integral via iterated, de-
fined in the file iterated laurent.mpl.
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5.3. Integration of a monomial, using Taylor expansion. Here,
we test the implementation of the algorithm described in Section 3.4.
This algorithm is based on Corollary 11 .7

The running times are shown in Table 8.

Table 8. Integration of a random monomial of pre-
scribed degree using Taylor expansion.

Degree

n 1 2 5 10 20 30 40 50 100 200 300

2 0
0

0

0
0

0

0
0

0

0
0

0.1

0
0

0.1

0
0.1

0.3

0
0.2

0.6

0
0.3

0.9

0
2.2

13

0.9
24

101

1.9
68

426

3 0
0

0

0
0

0

0
0

0.1

0
0.1
0.4

0
2.0

12

0
8.1

60

0.1
39

277

0
61

512

4 0
0

0

0
0

0

0
0.1
0.4

0
1.5

34

5 0
0

0

0
0

0

0
0.1
0.6

0.1
4.9

48

6 0
0

0

0
0

0

0
0.4
1.7

0.1
29

236

7 0
0

0

0
0

0

0
0.5

1.7

8 0
0

0

0
0

0

0
1.1

16

10 0
0

0

0
0

0.1

0
3.0

33

15 0
0

0

0
0.1
0.1

0.1
20

64

20 0
0

0

0
0.7

28

1.2
81

205

30 0
0

0.1

0
0.7

15

40 0
0.1
0.1

0
1.2

23

50 0.1
0.1
0.2

0.1
1.7

18

7This method is implemented in the Maple procedure integral via duality, defined
in the file duality.mpl.
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5.4. Integration of a dense homogeneous polynomial over a

simplex. Following the tests on single monomials, we ran tests on
random polynomials of varying density. We generated these polyno-
mials using the Maple function randpoly, requesting a number r of
monomials and the homogeneous degree M . For each monomial, the
exponent vector was drawn uniformly from {M ∈ Nd : |M| = M }, and
the coefficient is drawn uniformly from {1, . . . , 100}. Due to collisions,
the generated polynomial actually can have fewer monomials than r.8

We only include the results for a family of randomly generated, very
dense homogeneous polynomials, where we draw r =

(

M+d−1
d−1

)

random
monomials. Table 9 shows the number of monomials in the resulting
polynomials for our random tests. Tables 10, 12, 11 show the test
results of the three methods.

We remark that in the case of the method using decompositions
into powers of linear forms, we note that the same powers of linear
forms appear in the decomposition formulas (13) for many different
monomials xM1, xM2. We take advantage of this fact by collecting the
coefficients of powers of linear forms.9

5.5. Integration of a monomial with few effective variables.

Finally, we tested the performance of the three algorithms on mono-
mials xM with a small number D of effective variables. We fix the
number D. Then, for a given dimension n ≥ D and total degree M ,
we picked 50 combinations of a random simplex ∆ of dimension n and
a random exponent vector M = (M1, . . . , MD, 0, . . . , 0) with |M| = M .
We only include the results for D = 2 in Tables 13, 15, and 14.

8This is implemented in the Maple procedure random sparse homogeneous

polynomial with degree in the file examples.mpl.
9This is implemented in the procedure list integral via waring.
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Table 9. Number of monomials in a test family of ran-
dom dense homogeneous polynomials of prescribed de-
gree

Degree

n 1 2 5 10 20 30 40 50 100 200 300 1000

1 1
1

1

1
1

1

1
1

1

1
1

1

1
1

1

1
1

1

1
1

1

1
1

1

1
1

1

1
1

1

1
1

1

1
1

1

2 2
2

2

1
2.2
3

2
4.2
6

4
7.1
9

11
14

18

16
20

25

22
26

33

28
33

37

59
64

70

120
128

140

179
189

198

606
634

659

3 3
3

3

2
4

6

11
13

17

37
42

46

133
146

160

299
313

325

524
543

560

813
839

867

3209
3262

3307

12755
12836

12923

4 4
4

4

4
6.5
8

31
35

40

168
182

196

1085
1118

1144

3396
3452

3499

7748
7802

7887

14719
14807

14914

5 5
5

5

8
9.7

12

72
81

88

610
633

661

6650
6716

6789

29181
29329

29536

6 6
6

6

10
14

16

146
160

174

1847
1896

1934

33406
33591

33880

7 7
7

7

15
18

21

276
291

304

5015
5062

5114

8 8
8

8

19
23

29

476
498

521

12213
12295

12396

10 10
10

10

29
36

41

1236
1262

1289

15 15
15

15

64
76

85

7274
7352

7442

20 20
20

20

123
133

146

26742
26880

26985

30 30
30

30

282
295

309

40 40
40

40

502
521

542
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Table 10. Integration of a random dense homogeneous
polynomial of prescribed degree by decomposition into a
sum of powers of linear forms

Degree

n 1 2 5 10 20 30 40 50 100 200 300

2 0
0

0

0
0

0

0
0

0.1

0.1
0.1
0.2

1.0
1.2
1.4

3.1
3.6
4.4

7.8
9.0

11

16
18

21

228
270

304

3 0
0

0.1

0
0

0.1

0.1
0.2
0.3

2.1
2.5
2.9

74
81

88

4 0
0

0.1

0
0.1
0.1

0.6
0.8
1.0

30
32

35

5 0
0

0.2

0.1
0.1
0.2

2.6
3.0
3.4

6 0
0.1
0.2

0.1
0.2
0.3

8.9
9.5

10

7 0.1
0.1
0.2

0.2
0.3
0.4

26
28

30

8 0.1
0.1
0.2

0.4
0.5
0.7

81
85

91

10 0.2
0.3
0.4

0.9
1.0
1.2

15 0.6
0.7
0.8

4.0
4.3
4.8

20 1.6
1.8
1.9

12
13

14

30 5.8
6.1
6.4

63
68

72

40 15
16

16

221
232

241

50 29
30

30
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Table 11. Integration of a random dense homogeneous
polynomial of prescribed degree using iterated Laurent
series

Degree

n 1 2 5 10 20 30 40 50 100 200 300

2 0
0

0.1

0
0

0.1

0
0

0.1

0
0.1
0.2

0.2
0.3
0.4

0.6
0.8
1.0

1.2
1.7
2.2

2.1
3.1
4.0

24
29

37

255
350

438

3 0
0

0.2

0
0.1
0.2

0.2
0.4
0.6

2.1
2.7
3.3

22
32

37

146
184

210

4 0
0.1
0.2

0.1
0.2
0.3

2.4
3.0
3.6

37
40

44

5 0.2
0.2
0.3

0.3
0.5
0.7

12
14

16

351
365

380

6 0.3
0.4
0.5

1.0
1.2
1.5

50
55

61

7 0.7
0.8
0.9

2.0
2.4
2.8

161
179

195

8 1.2
1.3
1.6

3.3
4.6
5.8

481
517

560

10 3.5
3.6
3.8

13
15

18

15 22
23

23

117
127

140

20 91
94

98
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Table 12. Integration of a random dense homogeneous
polynomial of prescribed degree using Taylor expansion.

Degree

n 1 2 5 10 20 30 40 50 100 200 300

2 0
0

0

0
0

0

0
0

0.1

0
0.1
0.1

0.1
0.2
0.3

0.3
0.8
1.1

1.2
2.3
3.1

1.2
5.6
7.4

15
98

129

3 0
0

0

0
0

0

0.1
0.3
2.0

1.1
2.4
3.3

60
132

158

4 0
0

0

0
0

0.1

1.1
1.6
2.6

62
117

143

5 0
0

0

0.1
0.1
0.1

4.4
8.1

24

6 0
0

0.1

0.1
0.2
2.3

28
35

41

7 0
0

0.1

0.2
0.4
5.5

117
136

150

8 0
0.1
0.1

0.4
0.7

12

366
431

475

10 0.1
0.1
0.1

0.8
1.3
9.8

15 0.1
0.2
0.2

4.0
5.6
7.3

20 0.3
0.4
2.8

16
18

20

30 0.9
1.1
4.3

95
104

109

40 2.3
2.6
4.4

370
384

403

50 5.2
5.3
5.5
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Table 13. Integration of a monomial of prescribed de-
gree with 2 effective variables by decomposition into a
sum of powers of linear forms

Degree

n 1 2 5 10 20 30 40 50 100 200 300

3 0
0

0

0
0

0.2

0
0

0.1

0
0.1
0.2

0
0.3
0.5

0
0.7
1.1

0
1.5
2.3

0
2.2
3.5

1.9
11

15

1.9
47

80

9.8
109

217

4 0
0

0

0
0

0.3

0
0

0.2

0
0.1
0.2

0
0.4
0.7

0
0.9
1.4

0
1.7
2.8

0.5
2.8
4.3

0.1
13

20

0.2
64

103

0.3
180

270

5 0
0

0

0
0

0.4

0
0.1
0.2

0
0.1
0.3

0
0.6
1.0

0
1.3
2.0

0
2.5
3.8

0
3.5
5.9

1.8
17

26

0.3
81

128

6.0
205

335

6 0
0

0.2

0
0

0.2

0
0.1
0.2

0
0.2
0.4

0
0.7
1.2

0
1.8
2.6

0
3.1
4.9

0
4.5
7.5

2.1
25

34

7.0
105

164

0.3
241

449

7 0
0

0

0
0

0.3

0
0.1
0.3

0
0.2
0.5

0
1.0
1.5

0
1.9
3.0

0
3.7
5.9

0
5.9
8.7

2.3
24

39

0.2
128

184

0.2
279

468

8 0
0

0

0
0

0.5

0
0.1
0.3

0
0.3
0.6

0
1.1
1.6

0
2.3
3.5

0
4.0
6.5

0.1
6.8

10.0

4.2
28

45

0.4
122

206

10.0
347

529

10 0
0

0.3

0
0

0.3

0
0.1
0.4

0
0.4
0.7

0
1.3
2.2

0
3.3
4.9

0
5.6
8.6

1.7
10

14

0.1
41

58

13
189

266

15 0
0.1
0.3

0
0.1
0.3

0
0.2
0.5

0
0.7
1.2

0.1
2.4
4.0

0.1
6.0
8.9

0.1
9.9

16

0.1
15

24

0.2
65

105

0.2
292

479

20 0
0.1
0.3

0.1
0.2
0.5

0
0.5
0.8

0.1
1.3
2.1

0.1
4.7
7.1

0.1
9.7

15

0.1
17

26

0.2
26

40

23
123

170

30 0.1
0.2
0.4

0.2
0.4
0.8

0.2
0.9
1.5

0.2
2.8
4.7

0.2
11

15

0.2
19

33

0.2
38

58

0.2
55

92

0.3
254

369

40 0.3
0.4
0.6

0.3
0.6
1.2

0.3
1.9
2.9

0.3
5.4
8.5

0.3
20

29

0.4
41

62

0.4
66

110

0.4
101

171

50 0.5
0.6
0.8

0.5
1.0
2.1

0.5
3.4
4.7

0.6
9.2

14

0.6
31

49

0.6
63

106

0.7
130

185

36
201

286
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Table 14. Integration of a monomial of prescribed
degree with 2 effective variables using iterated Laurent
expansion

Degree

n 1 2 5 10 20 30 40 50 100 200 300

3 0
0

0

0
0

0

0
0

0

0
0

0.1

0
0.1
0.1

0
0.2
0.3

0
0.3
5.6

0
0.3
2.1

0.2
1.2
3.6

0.3
6.2

20

0.9
16

62

4 0
0

0.1

0
0

0.1

0
0.1
0.1

0
0.1
0.1

0.1
0.1
0.2

0.1
0.3
4.2

0.1
0.3
2.5

0.1
0.5
3.0

0.2
2.1
5.4

0.4
11

38

0.9
47

166

5 0.1
0.1
0.1

0
0.1
0.1

0.1
0.1
0.1

0.1
0.1
0.2

0.1
0.3
6.4

0.1
0.3
2.3

0.1
0.5
2.8

0.1
0.7
3.7

0.3
3.6
9.8

0.6
21

80

1.3
86

271

6 0.1
0.1
0.2

0.1
0.1
0.1

0.1
0.1
0.2

0.1
0.2
3.4

0.1
0.3
2.5

0.1
0.6
2.6

0.2
0.8
3.8

0.2
1.1
4.7

0.4
7.2

30

1.0
39

269

1.9
100

550

7 0.1
0.1
0.2

0.1
0.1
0.2

0.1
0.2
3.9

0.1
0.3
2.5

0.2
0.6
2.8

0.2
0.8
3.4

0.2
1.2
4.2

0.3
2.0
6.7

0.6
6.8

26

1.2
94

260

8 0.2
0.2
0.3

0.2
0.3
4.5

0.2
0.3
2.3

0.2
0.4
2.6

0.2
0.7
3.1

0.2
1.2
3.6

0.3
1.9
5.8

0.3
2.9

12

0.7
16

42

2.0
99

322

10 0.3
0.5
4.2

0.3
0.4
2.3

0.3
0.5
2.5

0.4
0.7
3.0

0.4
1.2
3.9

0.5
2.4
6.5

0.6
3.8

11

0.6
5.9

17

1.1
23

77

15 1.3
1.4
1.6

1.3
1.5
1.9

1.4
1.7
2.0

1.4
2.1
3.4

1.6
4.0
9.1

1.7
7.3

21

1.9
11

31

2.4
20

52

20 4.0
4.2
4.4

4.0
4.4
5.6

4.1
4.8
5.7

4.2
6.1
9.3

30 22
25

26

24
25

28

24
27

31

25
32

45

26
47

96

40 71
85

92

88
92

102

90
95

103

50 196
231

252

228
239

249

212
244

277

217
261

347
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Table 15. Integration of a monomial of prescribed de-
gree with 2 effective variables using Taylor expansion

Degree

n 1 2 5 10 20 30 40 50 100 200 300

3 0
0

0

0
0

0

0
0

0.1

0
0

0.1

0
0.1
0.2

0
0.2
0.6

0
0.4
1.3

0
0.8
2.6

0
5.8

27

1.9
62

359

4 0
0

0

0
0

0

0
0

0.1

0
0

0.1

0
0.2
0.4

0
0.4
1.2

0
0.7
3.0

0
1.8
8.2

0
11

58

5 0
0

0

0
0

0

0
0

0.1

0
0.1
0.2

0
0.2
0.7

0
0.6
2.2

0
2.0
6.7

0
2.9

15

0
19

110

6 0
0

0

0
0

0

0
0

0.1

0
0.1
0.3

0
0.7

16

0
0.9
8.4

0
2.0
8.8

0
4.4

72

0
31

124

7 0
0

0

0
0

0.1

0
0

0.1

0
0.1
0.3

0
0.5
1.8

0
1.6
8.4

0.2
4.3

21

0
5.9

32

0
52

246

8 0
0

0.1

0
0

0.1

0
0.1
0.2

0
0.2
0.4

0
0.9
2.8

0
2.7

36

0
3.6

19

0.3
9.3

42

0.1
65

547

10 0
0

0.1

0
0

0.1

0
0.1
0.2

0
0.2
0.6

0
1.1
7.0

0
3.5

22

0
8.4

40

0
20

92

20 0
0

0.1

0
0.1
0.2

0
0.4
1.1

0
2.8
9.3

0
12

43

0
40

156

0
74

309

2.0
121

462

30 0
0

0.1

0
0.2
0.5

0
1.4
5.6

0
6.9

29

0
62

205

0.1
90

583

40 0
0.1
0.1

0
0.4
0.9

0.1
3.3

32

0.1
10

40

0.1
71

329

50 0.1
0.1
0.1

0.1
0.4
1.5

0.1
5.5

39

0.1
19

65

0.1
126

525
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5.6. Discussion. In our implementation of the three methods and our
experiments for the case of random monomials, we observe that the
method of iterated Laurent expansion is faster than the two other
methods if the dimension n is very small (up to n = 5). Starting
from dimension n = 6, the method using decompositions into powers
of linear forms is faster than the other two methods. The method us-
ing Taylor expansion is always inferior to the better of the two other
methods, for any combination of degree and dimension.

In the experiments with random dense polynomials, in our implemen-
tation we did not see significant savings from collecting the coefficients
of the same powers of linear forms. As a consequence, the ranking of
the three methods is the same as it is in the case of random monomials.

The experiments with random monomials with few effective variables
show that all three methods benefit from using few effective variables.
The greatest effect is on the method using decompositions into pow-
ers of linear forms, where, for example, the restriction to 2 effective
variables allows to handle combinations of high degree M = 200 and
high dimension n = 15. However, for low dimensions (n ≤ 5), the
method of iterated Laurent expansion still wins. Also here the method
using Taylor expansion is always inferior to the better of the two other
methods. This discussion shows the power of Brion’s formula.
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6. Conclusions

We discussed various algorithms for the exact integration of polyno-
mials over simplicial regions. Beside their theoretical efficiency, the sim-
ple rough experiments we performed clearly demonstrated that these
methods are robust enough to attack rather difficult problems. Our
investigations opened several doors for further development, which we
will present in a forthcoming paper.

First, we have some theoretical issues expanding on our results. As
in the case of volumes and the computation of centroids, it is likely that
our hardness result, Theorem 1, can be extended into an inapproxima-
bility result as those obtained in [28]. Another goal is to study other
families of polytopes for which exact integration can be done efficiently.
Furthermore, we will present a natural extension of the computation of
integrals, the efficient computation of the highest degree coefficients of
a weighted Ehrhart quasipolynomial of a simplex. Besides the methods
of the present article, these last computations are based on the results
of [7] and [6].

Second, our intention has been all along to develop algorithms with
a good chance of becoming practical and that allow for clear imple-
mentation. Thus we have also some practical improvements to discuss.

Finally, in order to develop practical integration software, it appears
that our methods should be coupled with fast techniques for decom-
posing domains into polyhedral regions (e.g. triangulations).
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